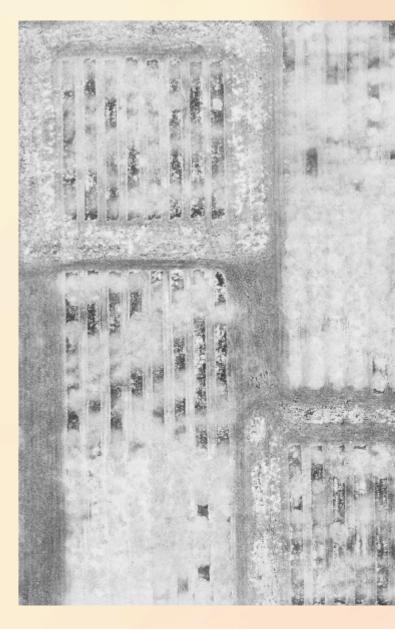


Using UAV Technology Detect Cherry Leaf Spo Disease & UAS Applications in Special Crops and Orchards

meron White

and Vegetable Crop Management Student Institute of Agricultural Technology & western Michigan College (NMC)

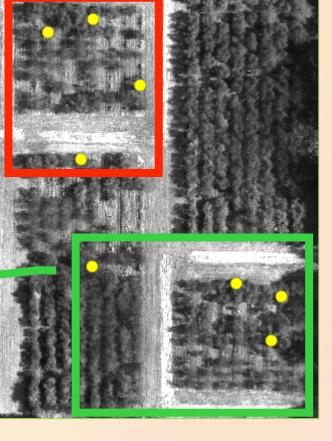
Collaborators:


Nikki Rothwell -Brian Matchett -Will Schultz -Carl Rocheleau -Rob Dreer -Bob Goodwin -George Sundin -Karen Powers - NWMHF MSU/NM MSU/NM NMC Av NMC Av MSU, R MSU, R MSU PS

2016 Cherry Leaf pot & UAS Project

t Goals:

- llect weekly data utilizing fixed wing UAS over S Spray Efficacy Trial
- alyze data for potential to detect CLS
- nthesize data and determining future plicability of UAS technology



LS Spray Efficacy Trial: Data Collection Si

- Northwest Michigan Horticulture Research Station
- Montmorency Cherry Blocks

Untreated Controls -CLS Trial 1

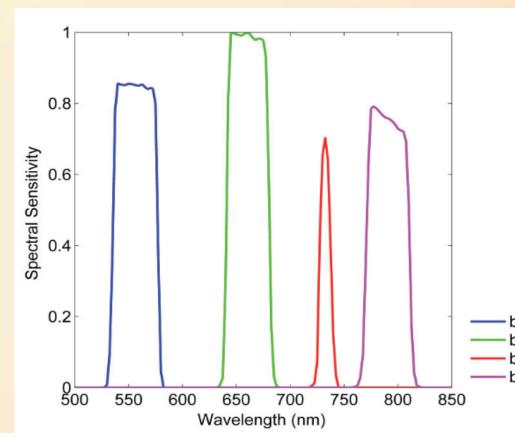
CLS Treated Trees CLS Trial 2

Flights

- enseFly eBee Fixed Wing Inmanned Aircraft System
- Veekly flights at NWMHRC
- .6 acres surveyed, 20 min. flights
- Ititude: 107 ft. = 1.7 in./pixel
- Iultispectral and RGB cameras quipped

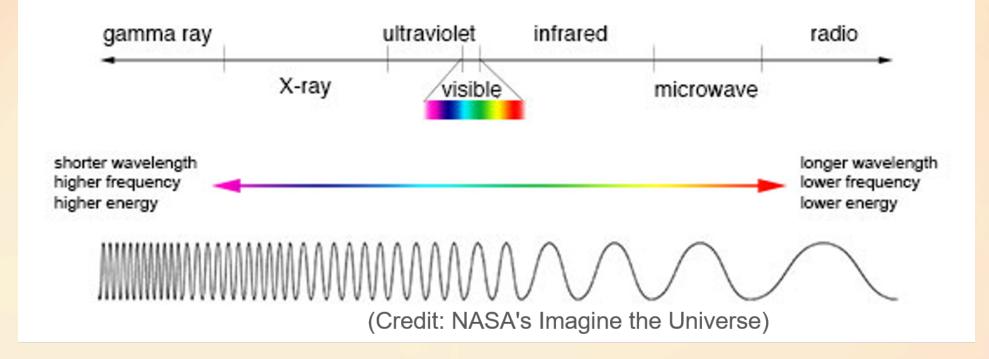
AS & Optical Equipment Utilized

- seFly "eBee" Fixed Wing UAS System
- nov MultiSpec 4C Multispectral Camera our Lenses simultaneously collecting multispectral data

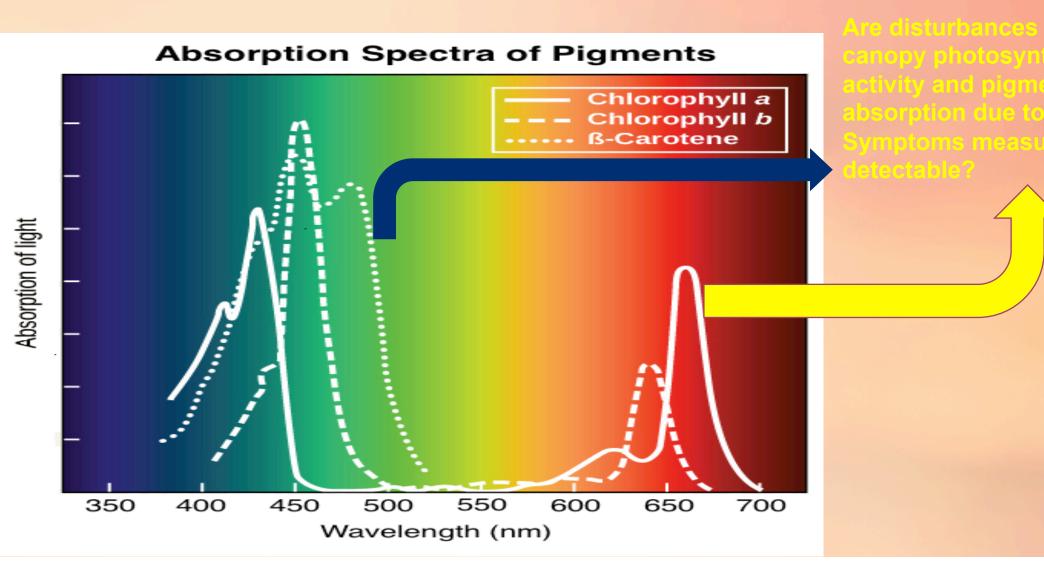

Green (550 nm)

Red (660 nm)

Red-edge (735 nm)


Near infrared (790 nm)

y CyberShot DXC WX220 igital Camera (Red/Green/Blue)



The Electromagnetic Spectrum

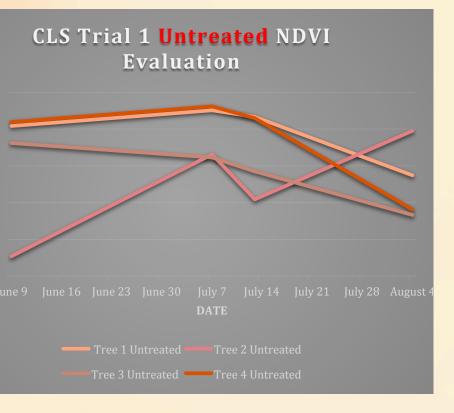
- Basis for our data comes from reflectance in the small visible spectrum
- Electromagnetic Radiation is very measurable and hence can provide precise inputs/feedback (think X-Ray machine, dialing in radio stations)

What are we trying to measure?

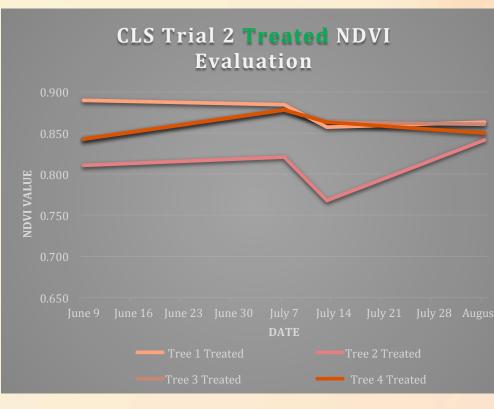
Vegetative Indices Used

Index Name	<u>Formula</u>	<u>Scale</u>	Focus of Application
lormalized Difference Vegetation Index (NDVI)	NDVI= <i>pNIR—pRed/</i> <i>pNIR</i> + <i>pRed</i>	-1.0 to +1.0	Spectral range of Chl-a+ Chl b absorption, 660 nm & 790 nm Past uses: assess row crop N for vegetative densities, water stres
reen Chlorophyll Index (GCI)	Cl _{Green} = <i>pNIR/pGreen</i> -1	0 to 16	Spectral range of many plant pigment's absorption (at low leve 550 nm Past uses; irrigation & fertility comparisons, LAI
-edge Chlorophyll Index (RECI)	Cl _{Red-edge} = <i>ρNIR/ρ</i> <i>Red—edge</i> ↓↑ -1	0.0 to 0.9	Steep range of increased reflect 690-730 nm, where Chl absorpti ends Past uses; soil background imp analysis, row crop canopy densi

erry Leaf Spot Life Cycle

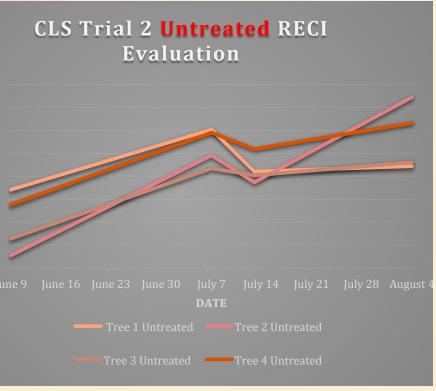

- Blumeriella jaapii Pathogen
- mycota Fungal Disease
- winters in leaf litter
- and life cycle can create foliar
- detection key to control

JAS help us manage?...

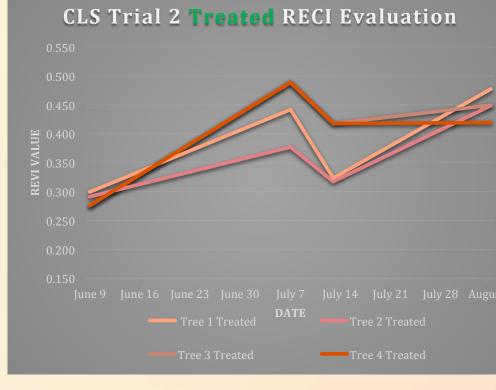


rmalized Difference Vegetative Index (NDVI) Results Untreated (UTC) vs. Treated

ted Control

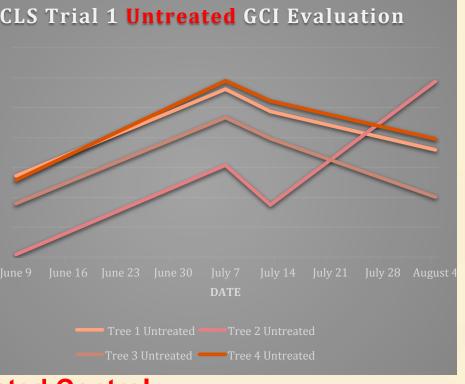

stent loss of tree vigor amongst 3 of 4 UTC consistent +/- 5% amongst 3 of 4 UTC s consistently lower than treated, 3 of 4 g below .80, 2 below .75

Treated

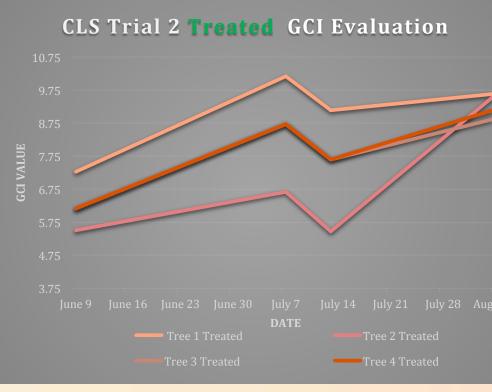

- Sustained higher values, 3 of 4 finishing above .840
- More parallel, steadier NDVI trends amongst treated trees

Red-edge Chlorophyll Index (RECI) Results: Untreated (UTC) vs. Treated

ted

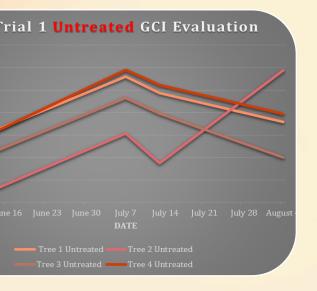

showing no notable correlation in trend esence of CLS symptoms s equivalent to treated trees

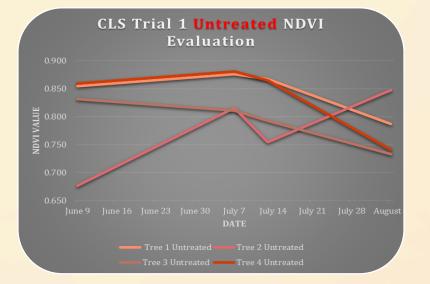
Treated

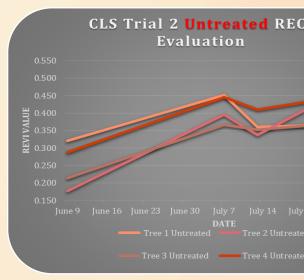

Values parallel those of UTC, no correlation lack of CLS progression
Consistent trend across index= complimentation

Green Chlorophyll Index (GCI) Results: Untreated UTC vs. Treated

ated Control


ar trends similar NDVI, may suggest β carotene, depleted photosynthetic in Green $\lambda 500-550$ nm range st margins on scale between trees in ng (UTC) : vs NDVI & RECI scales

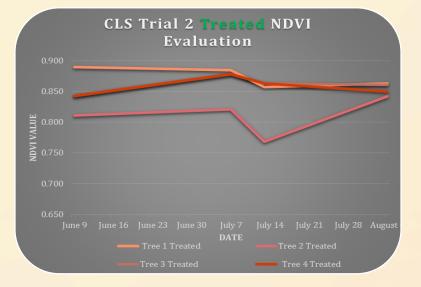



Treated

Like NDVI, treated trees sustaining highe GCI values versus UTC, (appr. 19%) endin
Wide margins on scale, but strong trends amongst group, and trends with NDVI

Comparison of Indices Used : UTC




GCI

NDVI

RECI

mparison of Indices Used : Treat

GCI

NDVI

RECI

Conclusions

- an not scientifically single out CLS as sole cause of UTC lower alues, however, highly likely there was positive association
- General photosynthetic activity & tree vigor can be assessed via UAS sing the NDVI and GCI indices
- ECI may be an effective complimentary filter to NDVI or GCI, focuses n a narrow wave length near edge of photosynthetic activity, variable esults UTC vs treated

Model for Future UAS Agronomy: outing, Diagnostic & Treatment Techniqu

1) Fixed Wing UAS Surveying Flight

- Efficiently maps and detects areas of concern utiliz vegetative indices optimized for crop, GDD
- 2) Low-Altitude Quad-Copter or Hex-Copter Flight
 - GIS Tagged Areas of Concern Inspected and Sam
 - LIDAR, Robotic Sampling Tools, and/or VR (Virtua Reality)
- 3) Agronomist Confirms Diagnosis
 - Agronomist or Scout confirms UAS diagnosis and samples, writes spray recommendation
- 4) Autonomous Aerial Spray or Automated Nozzles Spra Treatment
 - UAS Device can make autonomous aerial applicat agro-chemical with GIS, LIDAR, automatic nozzle
 - Or Tractor + sprayer equipped with precision autor nozzle technology is used

Potential for Future UAS Applications and Research in Specialty Crops

ruit

- tinue to develop, optimize indices and algorithms for use at canopy her altitude, "fixed wing") and leaf scale (low altitude, "copter")
- s robotic attachments for optical and destructive leaf tissue pling, soil sampling
- deterrents
- ential impact in High-Density, Tall-Spindle, Fruiting Wall systems for , irrigation control and automation techniques
- indices to monitor water content and stress in vines, precision ation
- notely sample individual berries/clusters Brix/Ta/Ph, improve product trol, yield estimates

rry

etative indices and/or thermal imaging to monitor frost pockets + ught stress, control irrigation valves

cknowledgements

Funding Provided by

- > NMC Foundation Innovation Grant
- > MSU AgBioResearch
- > NMC Aviation Division
- > MSU Institute of Agricultural Technology

Resources and Expertise Provided by

- > Matt Lyons(In memory of)
- > NWMHRC Research Staff & Technicians
- > Bob Goodwin
- George Sundin and Graduate Students

HIGAN STATE

Spartans Lead the Wa

(...and Hawk Owls to